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Numerical Simulation of Subaerial and Submarine Landslides Using the Finite 

Volume Method in the Shallow Water Equations with (b, s) Coordinate

(b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및

해저 산사태 수치모의
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Abstract : A model of landslides is developed using the shallow water equations to simulate time-dependent

performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be

applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the

total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in

landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and

experimental data and good agreements are observed. The developed landslide model is successfully applied to

predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the

submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom

roughness.

Keywords : subaerial landslide, submarine landslide, debris flow, shallow water equations, (b, s) coordinate,

numerical analysis

요 지 :산사태의 시간에 따른 전파를 모의하기 위해서 천수방정식을 사용하여 산사태 수치모형을 개발하였다. 하
천 및 해양에서의 산사태에 모두 해석이 가능하도록 (b, s) 좌표로 표현된 천수방정식을 개발하였다. 산사태에서 발
생하는 수치적인 불연속성을 극복하기 위해서 HLL approximate Riemann solver와 total variation diminishing (TVD)
limiter를 사용한 유한체적법을 사용하였다. 댐파괴 흐름와 토석류의 각 경우에 수치해석을 수행한 결과를 해석해와
실험자료와 비교를 하였다. 그 결과 서로 유사함을 확인되었다. 본 모형을 사용하여 해상 산사태와 해저 산사태를
성공적으로 모의하였다. 해저 산사태에 비해 해상 산사태의 전파속도가 더 빠르고, 바닥경사가 급할수록 또는 거칠
기가 작을수록 산사태 전파속도가 더 빨라짐을 확인하였다.

핵심용어 :해상 산사태, 해저 산사태, 토석류, 천수방정식, (b, s) 좌표, 수치해석

1. Introduction

Subaerial and submarine landslides, mainly caused by

heavy rain or earthquake, play a crucial role in numerous

disasters. Subaerial landslide or debris flow on the earth

surface caused extremely hazard events in the landslide his-

tories (Jakob et al., 2000; McDougall et al., 2006; Van Tien

et al., 2018). Also submarine landslide was mentioned to be

one of significant contributions to the generation of enor-

mous tsunamis in coastal zones (Horrillo et al., 2013; Sassa

et al., 2016; Tappin et al., 2014). In recent decades, lots of

efforts have been made to investigate the behavior of land-

slides using laboratory experiments (Iverson, 2003, 2015;

Iverson et al., 2010; Major, 1997) or numerical simulations

(Denlinger and Iverson, 2001; Imran et al., 2001; McDou-

gall et al., 2006; Naef et al., 2006) due to difficulties in

measuring the field data. Numerical model results were

compared with the real-time field events for verification of

the model. The model with the shallow water equations was

often used for landslide or debris flow simulation. Paik
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(2015) used a high-resolution finite volume scheme in the

shallow water equations for modeling debris flow. The

model results were in good agreement with both the analyt-

ical solution and the experimental data even near the wet

and dry front. Yavari-Ramshe et al. (2015) introduced a

robust finite volume model based on the shallow water

equations to simulate granular flows. The numerical solu-

tions were compared to experimental data with a relative

error less than 5%. The finite volume method (FVM) is

known to be suitable for discretizing the shallow water

equations. Using a conservative form of the governing

equations, the finite volume method can deal with numeri-

cal discontinuities like shock or dry/wet front in hydraulic

engineering problems (Erduran et al., 2002).

In this study, we develop a subaerial and submarine land-

slide model using the shallow water equations with the

coordinate of (b, s). Here b and s are vertical locations from

a reference line. In river flow or debris flow, people often

use the Saint-Venant equations with the variable of depth of

water or debris instead of b and s. When using the shallow

water equations with the coordinate of (b, s), it is possible

to simulate flow in river and coastal zones simultaneously.

We use the finite volume method to discretize the govern-

ing equations to deal with numerical discontinuities. In sec-

tion 2, we develop a model of subaerial and submarine

landslides based on the shallow water equations with the

coordinate of (b, s) and the finite volume method is used to

discretize the governing equations. In section 3, we vali-

date the developed model by comparing numerical results

with analytical solutions and experimental data for dam-

break water flow and debris flow. In section 4, we apply the

developed model to subaerial and submarine landslides and

find reasonable results. In section 5, we summarize the

present investigation and suggest future study.

2. Development of Landslide Model

In this section, a model of subaerial and submarine land-

slides is developed based on the shallow water equations

with the coordinate of (b, s) and the finite volume method is

used to discretize the governing equations.

2.1 Derivation of governing equations

Fig. 1 shows the computational domain for simulating

submarine landslide and defined variables. In the figure, s

and b are the elevations of the surface and bottom of the

debris from a reference line, h (= s − b) is the debris depth,

and (u, v, w) are the velocities in the (x, y, z) directions. The

continuity equation for the incompressible fluid flow is

given by

(1)

Boundary conditions at the surface and bottom of the debris

are as follows:

(2)

(3)

We integrate Eq. (1) from the bottom to the surface and use

the Leibnitz’s rule with the boundary conditions given by

Eqs. (2) and (3). Finally, we get the continuity equation in

two-dimensional (x, y) domain as

(4)

and the continuity equation in one-dimensional (x) domain

as

(5)

The x-directional momentum equation is defined as fol-

lows:

(6)

where τxx, τyx, τzx are the shear stresses. We only consider the

x − z plain, so τxx, τyx are equal zero. In Eq. (6), the pressure

p is assumed to be hydrostatic and thus p = ρg(s − z). We

add u(∂u/∂x + ∂v/∂y + ∂w/∂z) to Eq. (6) in order to get the
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Fig. 1. Computational domain of submarine landslide using the
coordinate of (b, s).
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following equation

(7)

where − ∂b/∂x(= S0) is the bottom slope. We integrate Eq.

(7) from the bottom to the surface, use the Leibnitz’s rule

and the boundary conditions given by Eqs. (2) and (3).

After neglecting the shear stress at the free surface, the

resulting momentum equation is given as

(8)

In one-dimensional (x) domain, Eq. (8) is reduced to

(9)

which can also be expressed as

(10)

using the following relation as τzx
z=b

= ρg(s − b)Sf. Follow-

ing Voellmy (1955) type of the flow resistance relation, the

friction term Sf may consist of two components, i.e., the

bottom friction and the internal soil friction given by

(11)

where n and μ are the Manning’s roughness and the effec-

tive friction coefficients, respectively. Manning’s n values

range from 0.032 to 0.2 s/m
1/3

 while the μ values for debris

flows range from 0.06 to 0.175 (Paik, 2015).

Eqs. (5) and (10) are the one-dimensional shallow water

equations in a conservative form to deal with numerical dis-

continuities in landslides. Using chain rule and the continu-

ity Eq. (5), the momentum Eq. (10) becomes

(12)

and, further dividing by (s − b), the resulting momentum

equation is given by

(13)

Eqs. (5) and (13) are the one-dimensional shallow water

equations in an alternative conservation form (Toro, 2001).

2.2 Numerical scheme

In the present model, a finite volume scheme with an

approximate Riemann solver is used to discretize the gov-

erning equations in time. The governing equations of the

one-dimensional shallow water equations can be written in

a conservative form as

(14)

where

(15)

(16)

(17)

and U is the vector of conserved variables. Eq. (14) is

solved using the splitting method. At the first step, the

homogenous pure advection problems are solved as

(18)

(19)

where the superscript “n” implies the present time step and

the subscript “i” implies the cell center of the computa-

tional domain. At the second step, the final solutions of U

are obtained by adding the source terms as

(20)

(21)

where Ui

(s)
 is the value at which the source term vector S is

evaluated. To avoid numerical instability due to the friction

term, an implicit scheme is employed following Paik (2015).

The WAF (weighted average flux) method is known as the

second-order extension of the Godunov method. A TVD

(total variation diminishing) version of the WAF method
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which results in a high-resolution method is employed in

this study. Thus, the numerical flux at the cell interface can

be expressed as

(22)

where ck(= SkΔt/Δx) is the Courant number related to the

wave speed Sk. The flux jump across wave k at the cell

interface is given by

(23)

and the WAF limiter function is given by

(24)

where

(25)

and r
(k)

 is the ratio of the upwind change to the local change.

B(r
(k)

) is the limiter function (Toro, 2001). In this study, we

use the van Leer limiter function for B(r) as

(26)

The HLL approximate Riemann solver is used to deter-

mine the HLL numerical flux as

(27)

The wave speed estimates are given as

(28)

In Eq. (28),  where K = L, R is the wave

celerity and qK is given by

(29)

where

(30)

For wet/dry bed conditions, the wave speeds are deter-

mined as

(31)

(32)

2.3 CFL criterion

The numerical scheme used in this study is explicit and

the CFL (Courant-Friedrichs-Lewy) number is investi-

gated for numerical stability. The speed of landslides, espe-

cially for the wet/dry front speed, can be affected by the

friction slope terms. In this study, we use a new CFL crite-

rion (Paik, 2015) to determine the time step given by

(33)

where c is the celerity, uf is the total friction velocity. In the

Voellmy resistance relation, the total friction velocity can

be expressed as

(34)

The value of 0.9 of the CFL number is used for all the simu-

lations in this study.

3. Model Validation for Water Flow

and Debris Flow

3.1 Validation for water flow after dam break

In the first part, we validate conservative forms of the

equations for a dam-break problem. We compare solutions

of conservative forms of the governing Eqs. (5) and (10) and

alternative conservative forms of the governing Eqs. (5)

and (13) using homogeneous parts of these equations. The

computational domain is 2 m long, a dam is located in the

middle of the domain and water of 0.1 m depth is located

behind the dam. Figs. 2(a) and 2(b) show numerical solu-

tions of water surface elevations at t = 0.2 s using the con-

servative forms and alternative conservative forms, respec-

tively. In the figures, analytical solutions (Mangeney et al.,

2000) as well as initial conditions are shown for compari-

son. The conservative forms of the equations yield the same

solutions as the analytical solutions. However, the alterna-

tive conservative forms of the equations yield different

solutions. At a point of dry bed, (s − b) is equal to zero. In

deriving alternative conservative forms of the momentum

Eq. (13), we divide some terms by zero-valued (s − b)
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which is mathematically meaningless. That is why numeri-

cal solutions of alternative form of the equations are differ-

ent from the analytical solution in the dry/wet discontinuity

points. In further investigation, we use the conservative

forms of the equations only.

In the second part, we compare our model results with

two cases with physical experimental data for water flow

after dam break. The first case was done by Stansby et al.

(1998). The test conditions are the same as in the first part.

That is, the domain is 2 m long, a dam is located in the mid-

dle, and water with 0.1 m depth is located behind the dam.

Fig. 3 compares numerical solutions, analytical solutions,

and the measured data at t = 0.12 s, 0.20 s, 0.36 s, 0.50 s.

On the whole, the numerical results show good agreements

with the analytical solutions and the experimental data even

though wave breaking occurred in reality. Especially, the

numerical solutions are closer to the measured data at t =

0.36 s and t = 0.50 s when the water surface elevations are

milder than at previous times.

The second case was done by Liang and Marche (2009)

who tested a large-scale dam-break flow over a symmetric

triangular hump as shown in Fig. 4. The domain is 38m

long and a dam is located 15.5 m away from the upstream

end. Water of 0.75 m depth fills the dam. The triangular

hump is 0.6 m long and 0.3 m high and the center of it is

located 13 m away from the dam. To investigate sensitivity

of the flow on the bottom friction, three Manning’s rough-

ness coefficients are set as n = 0.00833 m
−1/3

s, 0.0125m
−1/3

s,

0.01875 m
−1/3

s which are different with a ratio of 1.5 each

other. The upstream boundary is closed while the down-

stream boundary is open. Liang and Marche (2009) mea-

sured time series of water depths at 7 gauges which are

located at 2 m, 4 m, 8 m, 10 m, 11 m, 13 m, and 20 m

downstream of the dam. For numerical experiment, the total

simulation time is 90 s and the grid size is 5 cm.

Time series of water depths at 7 gauges are recorded to

describe these complicated phenomena and compared with

the experimental data in Fig. 5. At the initial time, the dam

suddenly broke and the initial water at the reservoir rushed

onto the downstream like a flood on a plain. The waterfront

reached the left slope, climbed over the peak of the hump

(gauge 1 to 6) and further arrived at the other side of the

Fig. 2. Comparison of numerical solutions of water surface eleva-
tions against analytical solutions at t = 0.2 s after dam break:
(a) conservative form; (b) alternative conservative form.

Fig. 3. Comparison of numerical solutions, analytical solutions and
experimental data of water surface elevations at different
time steps after dam break.

Fig. 4. Computational domain for dam break flow over a triangular
hump.
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horizontal bottom (gauge 7) around t = 5 s. Because of an

interaction between the incoming waves and the reflecting

waves from the side of the hump, a shock wave formed and

propagated back to the upstream boundary. On the other

side of the hump, a rarefaction wave occurred and moved to

the downstream boundary, which caused increase of water

depth at the right side of the hump (gauge 7). Around t =

25 s, the shock wave reached and reflected from the wall at

the upstream boundary. After this reflection, the second

wave propagated to the downstream. These complex pro-

cesses continued until the momentum energy was damped

due to bottom friction and water mass passed through the

downstream boundary.

Overall, the numerical simulations show good agree-

ments with the experimental data in term of both the propa-

gation speed and water depth. In particular, at gauges 1 and

2, numerical results are close to the measured data until

t = 90 s. At gauges 3 to 6, numerical results around the first

peak of water depths are higher than the measured data. At

gauge 7 which is at the other side of the hump, numerical

results are always higher than the measured data. These dis-

crepancies might happen because the numerical solutions

of the shallow water equations were made based on the

assumption of neglecting dispersive terms which would

spread out several components with different speeds. If we

simulate these flow phenomena using the Boussinesq equa-

tions which include dispersive terms, we would get solu-

tions closer to the experimental data. When the Manning’s

roughness coefficient n increases, the flow speed decreases

at the first wave and the flow thickness increases at all the 7

Fig. 5. Comparison of numerical results of water depth with experimental data at 7 gauges for dam-break flow over a hump.
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gauges. Especially, at gauges 3 to 6, due to the adverse

slope of the hump, with the increase of the Manning’s n, the

flow thickness decreases at the first peak. The Manning’s n

equal to 0.0125 gives the numerical solutions closest to the

measured data.

3.2 Validation for debris flow

The present landslide model is applied for debris flow on

the well-known large-scale USGS experimental flume. This

experiment which was conducted on September 13, 2001

(Iverson, 2003; Iverson et al., 2010) has been investigated

by several researchers to test their debris flow models (Den-

linger and Iverson, 2001; Paik, 2015). The flume is a rect-

angular concrete channel, 95 m long, 2 m wide, and 1.2 m

deep. The main part of the channel has a steep slope of 31
o

and is connected with a curve to the runout surface having a

mild slope of 2.4
o
. The debris flow from the main channel

would deposit at the 4 m wide runout surface. A volume of

saturated soil has a mass of 9.4 m
3
 consisting of sand-gravel-

mud (SGM) material and is suddenly opened by a vertical

headgate. More detailed information about the experimen-

tal facilities was reported in Iverson (2003) and Iverson et

al. (2010).

Numerical simulation is conducted using the soil den-

sity of ρ = 2100 kg/m
3
, the Manning’s roughness coeffi-

cient of n = 0.034 m
−1/3

s, and the effective friction coeffi-

cient of μ = 0.12. The grid size is 0.1 m and the CFL num-

ber is 0.9 which guarantees numerical stability. During

simulation we use a constant value of 2 m channel width

because the numerical model is horizontally one dimen-

sional. In the real experiment, however, the width changed

from 2 m at the main channel to 4 m at the runout surface.

This width change would cause numerical solutions differ-

ent from the experimental data on the area of the runout

surface.

Fig. 6 compares numerical results of debris flow thick-

ness with measurement data at locations of x = 32 m, 66 m,

90 m downstream of the headgate. It should be noticed that

the location x is not the horizontal distance but the

downslope distance on the bottom. The first and second

locations are in the main channel while the third location is

on the runout surface. Due to turbulent high speed of the

debris flow on the steep channel, high fluctuation of the

solutions occurred at the first and second locations in the

present high-resolution numerical model. To smooth the

highly fluctuating solutions, we use the moving average

algorithm as given by

(35)

where yk is the raw (noisy) data, (yk)s is the smoothed data,

the odd number 2n + 1 is named as the filter width or span.

The greater the filter width is, the smoother the data are. In

order to smooth these time series data of the flow thickness,

we choose the value of span 2n + 1 = 101 which is equiva-

lent to value of n = 50 and repeat smoothing process again.

The results after smoothing are shown in Figs. 6(a) and 6(b).

On the whole, the numerical simulations are in good

agreement with the experimental data, especially in term of

the flow speed and flow thickness. Although the ampli-

tudes are overestimated, the peakedness and the fluctuation

of the computed results represent the effects of friction

terms in the momentum equation. The peaks of the simulat-

yk( )s = 
yk+i

2n + 1
----------------

i=−n

i=n

∑

Fig. 6. Comparison of numerical results of debris flow thickness
with experimental data, (a) 32 m downslope, (b) 66 m
downslope, (c) 90 m downslope.
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ing results are higher than the measurement data due to the

assumption of being hydrostatic in the shallow water equa-

tions as mentioned in the previous test. The time series data

which are measured at x = 32 m and x = 66 m in Fig. 6(a)

and Fig. 6(b), respectively, show better agreements than

those at x = 90 m. These differences are of the curvature

connected between bed slope of 31
o
 and the flat bottom of

2.4
o
 is not represented well in this simulation. Moreover, in

the present 1D model, the width of the channel of 2 m is

taken into account for the whole domain while that of

runout surface of 4 m is set at this point of the experiment

as mentioned previously. It results in the overestimation of

approximate 50% in term of the flow thickness on the

runout surface.

4. Model Application to Subaerial

and Submarine Landslides

The debris flows over and under the water surface are

called as the subaerial and submarine landslides, respec-

tively. The subaerial landslide is affected by the subaerial

gravity acceleration g0 = 9.81 m/s
2
 whereas the submarine

landslide is affected by the buoyancy gravity acceleration

g1 = g0(ρs − ρw/ρs where ρs and ρw are densities of soil and

water, respectively. Rzadkiewicz et al. (1997) conducted

hydraulic experiment of a submarine landslide and the induced

tsunami. The volume of soil in a triangular section with

0.65 m × 0.65 m suddenly slid down on a slope of 45
o
 which

was connected to a horizontal bottom and the tsunami occurs

due to the landslide. They also simulated the phenomenon

using 2-dimensional (x, z) Navier-Stokes equations. In this

study, we conduct numerical experiments of subaerial and

submarine landslides using their model scales (see Fig. 7).

Fig. 7. Topography of subaerial and submarine landslides on a
slope of θ = 45o connected to a horizontal bottom.

Fig. 8. Numerical result of soil surface elevations at t = 0.4 s for
subaerial landslide.

Fig. 9. Numerical result of soil surface elevations at t = 0.4 s for
submarine landslide.

Fig. 10. Numerical result of soil surface elevations at t = 0.4 s for
combined subaerial-submarine landslide.

However, we use different properties of ρ = 2100 kg/m
3
,

n = 0.034 m
−1/3

s, μ = 0.08 following Paik (2015) who simu-

lated landslides using the Saint-Venant equations. The grid

size is Δx = 1 cm and the CFL number is 0.9 which guaran-

tees a numerical stability.

Figs. 8 and 9 show surface elevations of the subaerial and

submarine landslides, respectively, at t = 0.4 s. For the sub-

marine landslide, due to the buoyancy effect, the accelera-

tion is reduced to g1 = 0.52g0 and the soils move more

slowly compared to the subaerial landslide.

Fig. 10 shows surface elevations of combined subaerial-

submarine landslide at t = 0.4 s for the water surface at sw =
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0.8 m. Subaerial landslide occurs above the water surface

while submarine landslide occurs below the water surface.

For the submarine landslide, due to the buoyancy effect, the

acceleration is reduced to g1 = 0.52g0 and the soils move

more slowly compared to the subaerial landslide. There-

fore, for this combined subaerial-submarine landslide, the

soils move more slowly compared to the subaerial land-

slide (Fig. 8). However, they move faster compared to the

submarine landslide (Fig. 9).

The next case study is to investigate the sensitivity of

debris flow with different parameters. We change the angle

of slopes from θ = 45
o
 to θ = 30

o
. Fig. 11 shows the topog-

raphy for simulating subaerial landslide with bottom slope

of θ = 30
o
.

Fig. 12 shows the numerical solutions of surface eleva-

tions of subaerial landslide with bottom slope of θ = 30
o
 at

t = 0.4 s. After comparison with the solution with θ = 45
o

shown in Fig. 8, we find that the velocity increases with the

increase of the bottom slope. These results are physically

reasonable.

Furthermore, we compare numerical results with differ-

ent Manning’s roughness coefficient of n = 0.034 m
−1/3

s and

n = 0.051 m
−1/3

s which are different with a ratio of 1.5. It is

clear that the propagation speed of the debris flow depends

on the bottom roughness coefficient.

Figs. 13 and 14 show numerical solutions of surface ele-

vations of subaerial landslide with Manning’s n of 0.034 m
−1/3

s

and 0.051 m
−1/3

s, respectively. The speeds of landslides of

Fig. 11. Topography for simulating subaerial landslide with bot-
tom slope of θ = 30o.

Fig. 12. Numerical result of soil surface elevations at t = 0.4 s for
subaerial landslide with bottom slope of θ = 30o.

Fig. 13. Numerical result of soil surface elevations for subaerial
landslide with n = 0.034  m−1/3s, (a) t = 0.2 s, (b) t = 1.0 s.

Fig. 14. Numerical result of soil surface elevations for subaerial
landslide with n = 0.051 m−1/3s, (a) t = 0.2 s, (b) t = 1.0 s.
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the two cases are slightly different at t = 0.2 s, but the two

speeds become more clearly different at t = 1.0 s. This

implies that larger bottom roughness cause slower speed of

the debris flow which was mentioned also by the previous

works (Mikoš et al., 2006; Paik, 2015).

5. Conclusions

In this study, we investigated subaerial and submarine

landslides using the finite volume scheme in the one-dimen-

sional (x) shallow water equations. We used the (b, s) coor-

dinate system to express the shallow water equations which

can be applied in coastal zone as well as river. To discretize

the governing equations, we used the well-known high-res-

olution scheme which combines the TVD limiter function

and the second-order Godunov method (WAF method)

employing HLL approximate Riemann solver. This scheme

can deal with the wet/dry problems occurring in the real

landslide phenomena. We applied both the conservative and

alternative conservative forms of the shallow water equa-

tions to a dam-break water flow and found that the conser-

vative form of the equations yielded accurate solutions in

the dry/wet boundaries but the alternative conservative

form yielded inaccurate solutions. We further verified the

developed numerical model by comparing numerical

results with the analytical solutions and the experimental

measurements for both the dam-break water flow and the

debris flow. We also applied the model to subaerial land-

slides with different bottom slopes and bottom frictions and

found that both steeper bottom slope and smaller bottom

friction cause faster movement of soils. In the future, the

two-dimensional (x, y) shallow water equations as well as

the non-hydrostatic equations (e.g., the Boussinesq equa-

tions) will be developed to accurately solve the subaerial

and submarine landslide phenomena.
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